The Frankenstein Model: Spoiler-Detection using Text and Metadata
Features

Mira Behar
Vassar College

Abstract

This study tackles the Spoiler Detection Task
using binary classifiers along with text and
metadata features. We found that metadata
did not significantly improve the performance
of the classifier, while text features performed
worse than the bag-of-words baseline. How-
ever, we found that restricting the dataset to spe-
cific genres improved the performance of the
classifier; further adding data on the reviewer’s
user ID as well the location of the spoiler within
the review improved the F scores for the posi-
tive label.

1 Problem Statement

Our study is a replication study where we tackle
the spoiler detection task: given a sentence from
a review of a book, predict if it contains a spoiler.
A spoiler is defined as a piece of information that
reveals important plot developments which, if pre-
viously unknown, may ruin the reading experience
for new readers. The most popular state-of-the-art
models in spoiler detection are based on neural
networks. For simplicity, in this study we utilized
classifiers in lieu of neural networks. We investi-
gated which text or metadata features may improve
a bag-of-words baseline in a binary classification
model.

2 Related Work

Spoiler detection has achieved great results in re-
cent years with attention-based neural networks.
Neural networks like the hierarchical attention net-
work (HAN) (Yang et al., 2016) have had suc-
cess in modeling sequential dependency among
sentences in a text (Wan et al., 2019), which is
useful in identifying the location of a spoiler sen-
tence within the text. The best performing NN
model is SDGNN (Chang et al., 2021), which uses
syntax-aware Graph Neural Networks (GNNs) to

Francesca Lucchetti
Vassar College

weigh the relative importance of dependency re-
lations between context words to fully capture se-
mantics. This model also leverages genre-aware
pooling to solve the common problem of distrac-
tion due to genre-specific revelatory words, which
are erroneously flagged as spoilers (eg. “murder”
in murder-mystery novels) (Chang et al., 2018).

Non-neural models have achieved moderate suc-
cess in spoiler-detection with machine learning al-
gorithms. Guo and Ramakrishnan 2010 proposed
a solution which leveraged LDA (Latent Dirich-
let Allocation) topic modeling alongside sequen-
tial dependency data. To capture sequential depen-
dency without the use of attention networks, the
authors used the Stanford typed dependency parser
(de Marneffe et al., 2006) in the pre-processing
phase and stored dependency information as bi-
grams. Another contribution of this model is the
use of LDA-based predictive perplexity (PP) to
compute the similarity of item synopsis with the
spoiler text. The intuition behind this is that words
which appear in the item’s synopsis cannot be clas-
sified as spoilers in the candidate text.

Other machine learning models used in spoiler
detection are SVMs (Support-vector machines).
SVMs have generally been used to examine lex-
ical elements of text such as unigrams, stems of
unigrams or bigrams (Boyd-Graber et al., 2013).
Other common features are Named Entities (NE),
frequently used verbs, presence of URLs as a mea-
sure of objectivity, and the main tense of a text
(Jeon et al., 2013). The problem with using lex-
ical features is that unigrams can sometimes be
distracting (for example “father” was found to be
a misleading word because many spoilers are re-
lated to family member reveals (Boyd-Graber et al.,
2013)). For this reason, some studies have used
stepwise regression to evaluate usefulness of pro-
posed features (Jeon et al., 2013). Other studies
found that the incorporation of metadata around

the item’s genre, the date the item was published or
reviewer data (Boyd-Graber et al., 2013; Wan et al.,
2019) have been effective in improving precision.

A problem which is ubiquitously cited among
spoiler detection studies is annotator error due to
the subjectivity of spoilers. The existence of this
bias may affect what results are achievable with
non-neural models. We expect the classifiers to
achieve an [score of less than 0.75, as per the
results in Jeon et al. 2013.

3 Methods

For this study we will use a combination of the
Goodreads Reviews dataset!, Goodreads Books
and Goodreads Book Genres? datasets (Wan et al.,
2019) containing book reviews scraped from the
Goodreads website in JSON format. For each re-
view, the Reviews dataset provides the item (book)
ID, the reviewer’s user ID, the review text, as well
as a flag “has_spoiler” which was set by annota-
tors for each sentence in the review. The Book
and Genre datasets can be indexed using the book
ID and have information on the book’s genres and
author ID.

Since we are combining two datasets, in our
data preprocessing stage we created a CSV file to
collect all our target data. Each row in the CSV
corresponds to one sentence in a review, along with
the review ID, reviewer ID, book ID, publication
date, book author ID, book genre, reviewer’s rating
for the book, the sentence’s spoiler label (0 or 1) as
well as the location of the sentence in the review
given by an index.

We made sure that the new CSV dataset was
balanced. In the original Reviews dataset, spoiler
sentences made up just 3% of all 14 million
sentences. In our balanced CSV, we undersam-
pled the sentences with no spoilers and created
a dataset with around 1 million sentences and an
even split between the positive and negative spoiler
flag. To maintain balance during test/train split-
ting of the dataset, we used the Sklearn.metrics
train_test_split function which balances
the split and randomizes the sentences. Without a
balanced dataset, F1 scores were very low (< 0.1)
due to the model having an oversample of negative
spoiler.

'https://sites.google.com/eng.ucsd.
edu/ucsdbookgraph/reviews

https://sites.google.com/eng.ucsd.
edu/ucsdbookgraph/books

Our study used three main classifiers. The
first is the NLTK NaiveBayes classifier (clas—
sify bow_NB) which is a bag-of-words classifier
using presence of words in a document instead of
counts. The BOWs that were fed to this classifier
were unigrams, bigrams, and Named Entity uni-
grams (following the example in Jeon et al. 2013).
This classifier was useful to investigate the most
predictive features for our task.

The second classifier and our baseline is
the Sklearn MultinomialNB classifier (clas-
sify bow_counts) which is a bag-of-words
classifier with counts. We also tested this method
on the LinearSVC classifier, but found that it per-
formed worse both on Fj scores and time con-
straints. Along with bag-of-words unigrams, we
also passed bigrams, trigrams and four-grams to
this model to investigate how the F} scores would
improve as word relation information is added to
the prediction model. Another interesting applica-
tion of this classifier is that it can be used to pre-
dict unseen sentences (predict_unseen). We
supplied it with made-up sentences (eg. plausible
spoilers or deceptive non-spoilers) and observed
what its predictions were after training on the CSV
dataset.

The third and main classifier of this study is
also an Sklearn MultinomialNB classifier (clas—
sify_many_feats) with the difference that it
uses a Scipy HStack of matrices (CSR) to combine
multiple features. For example, along with bag-of-
word unigrams, this classifier can be fed metadata
such as the book genre or the user’s ID, or the in-
dex of the sentence within the review. The intuition
behind this is that certain users and genres may be
prone to more spoilers, and spoilers may tend to
appear toward the end of reviews.

This classifier also has the option of swapping
the simple bag-of-words unigrams with other text-
based features, like POS bigrams or only NE uni-
grams. POS bigrams are a way of approximating
dependency parsing by creating bigrams containing
nouns and verbs (eg.“NNP-VB” — “Harry-kills”).
POS bigrams can also we used with placeholder
substitutions, where the proper noun is substituted
with a placeholder to avoid overfitting to a specific
book (eg. ‘Harry-kills” — “NNP-kills”). The idea
of this classifier is that we could create a Franken-
stein classifier which uses all our best scoring fea-
tures (text or metadata) to achieve the highest score
possible.

https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/reviews
https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/reviews
https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/books
https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/books

Genre Number of Number of Number of Proportion of
sentences sentences tagged | sentences tagged | spoiler sentences
not spoiler (0) spoiler (1)

Fantasy 383,406 160,578 222,828 0.5811802632
Romance 289,192 201,275 87,917 0.3040091012
Young adult 201,432 88,839 11,259 0.1124797698
Fiction 154,906 67,210 87,696 0.566123972

Mystery 53,373 22,982 30,391 0.569407753

Comics 21,983 12,742 9,241 0.4203702861
History 15,639 7,023 8,616 0.5509303664
Non-fiction 13,022 5,818 7,204 0.5532176317
Children 5,804 2,970 2,834 0.4882839421
Poetry 691 287 404 0.5846599132

Figure 1: Statistics for the Goodreads Review Dataset

For evaluation we collected data on recall, pre-
cision and F; measures. We explored Area Un-
der Curve (AUC) measure suggested by Wan et al.
2019 but found that it did not provide additional
information because we used balanced dataset.

4 Results

We compared the performance of the Multinomi-
alNB and LinearSVC classifiers when trained with
bag-of-words n-grams, starting with unigrams and
successively including larger n-grams (Fig. 2 and
3). The MultinomialNB classifier produced bet-
ter Fy results across all features and performed
better as we added more n-gram features, but de-
clined slightly when we added four-grams (due to
four-grams becoming less informative as sentence
length grows). Including trigram features when
training the MultinomialNB classifier produced the
best F} score of 0.73. The LinearSVC model F}
results were fairly consistent at 0.70 across the
tested n-gram combinations, with recall increasing
slightly from 0.69 to 0.71 after including trigrams.
We established the MultinomialNB model trained
with unigrams as our baseline, with an F} score of
0.71.

The performance of the NLTK NB classifier im-
proved slightly when using bigrams as opposed to
unigrams, and decreased when only named entity
unigrams were used (Fig 4). The NLTK NB classi-
fier given only bigrams had the best performance,
with a I score of 0.74.

Beyond n-grams, we experimented with feeding
the MultinomialNB model several different text

and metadata features, and found that none of these
features were able to improve upon our baseline.
Of the text features, using only NE unigrams pro-
duced a poor F value of 0.64, and the performance
with POS bigrams was particularly bad, with F}
scores below 0.5 (Fig 7). The metadata features
were slightly more informative. UserID and Genre
produced the highest F7 scores of 0.71 when fed to
the MultinomialNB classifier, but these are still
lower than the baseline (Fig 5). We then tried
feeding the classifier multiple metadata features,
starting with the ones that performed the best when
used individually and found that as we incorpo-
rated more metadata features into the model, the
F score declined from 0.71 to 0.54 (Fig 6).

Based on these results we designed our Franken-
stein model, combining informative text and meta-
data features (Fig 8). We were able to improve
slightly upon the baseline by feeding the Multi-
nomialNB classifier genre metadata with n-grams,
excluding 4-grams, which yielded an F} score of
0.72. We repeated this experiment with user 1D
metadata instead of genre, and obtained the same
results.

To determine if thematic differences between
genres would impact the way spoiler sentences
were tagged, we tried running the Multinomial NB
classifier on smaller datasets organized by genre.
For accuracy, we used the fantasy and romance
datasets, since they contained the most sentences
(Fig 1). The baseline performance of the classifier
on the fantasy dataset, given only unigrams, was
the same as the baseline for the whole dataset, but

the F score increased to 0.75 when we fed the
classifier the same information as our Frankenstein
model, with the addition of the spoiler sentence
location metadata (Fig 10). The baseline classifier
for the romance dataset achieved the same F} score,
and the improved model for the romance genre per-
formed even better, with an F score of 0.77 (Fig
9).

We further tested our Frankenstein trigram and
user ID model on unseen input consisting of made-
up sentences.

Predicted 1 (Spoilers):

(1) H kills V at the end.

(2) I never expected it to end
with a big wedding...

(3) ajvhsdbnmu Woooocoow fs gon
vijk vkuhg dkj!!!!

(4) I don’'t believe it!!

(5) Really I am trying to trick
you, why did it have to happen

Predicted 0 (Not spoilers):

(6) What a cliffhanger!

(7) ajvhsdbnmu fs gon vijk vkuhg
dkj

(8) Another one for the hell of
it.

(9) This isn’t a spoiler.

The model successfully predicts sentences 6 and
9 as not-spoilers despite the trigger words “spoiler”
and “cliffhanger”. The model however seems to
be misled by exclamations like “Woooooow” (sen-
tence 3) which when removed solves the mislabel-
ing (sentence 7). Since the Goodreads Reviews
Dataset contains reviews from an online source, it
makes sense why the model would be biased to-
ward exclamatory words like the aforementioned
“Wow”.

We also found that the Naive Bayes without
counts model was able to pick up Goodreads-
specific information in its most predictive fea-
tures. For example, among the top 30 most pre-
dictive bigrams were the following words: “ow-
om”, “h-was”, “h-is”. This may seem like nonsense
at first glance, but actually “ow-om” or “other-
women/other-men” is a Goodreads specific cate-
gory in the Romance genre which is prone to spoil-
ers because of its subject (adultery romance books).
Similarly the model is picking up on a Goodreads

slang for hero/heroine, “h”.

By training the MultinomialNB classifier with a
limited number of metadata and text features, we
were able to create models that were more success-
ful at predicting spoiler sentences than our base-
line, especially when we narrowed our dataset to
book reviews from specific genres. However, even
our best results are not comparable to the perfor-
mance of neural network models for spoiler de-
tection, demonstrating that this spoiler detection
task is difficult to implement with simplistic classi-
fiers. The spoiler detection task is especially tricky
because of the subjectivity of the annotations. Fur-
thermore it is hard to guess which features will
be predictive of spoilers: genre ID and user ID
were our best guesses and did improve scores, but
similar metadata like author ID performed badly.
Likewise, POS bigrams did not perform as well
as we thought. This is because it is hard to know
which POS will be indicative of spoilers. We se-
lected noun-verb pairings (Guo and Ramakrishnan,
2010) because these could indicate the presence of
character names and their actions, but there could
be other better predictors.

5 Limitations and Future Work

More tests need to be run in order to understand
what criteria are a significant improvement upon
the bag-of-words baseline, especially considering
the randomization of the test/train set and the num-
ber of possibilities in combining all of our various
features.

While working on this project we made plans
for certain features which we could not implement
since they were beyond the scope of the project.
For future implementations, it would be interest-
ing to observe the effect of a DF-IFF transformer
(Wan et al., 2019); DF-IIF is a measure of the im-
portance of a word for a specific item (book). By
using DF-IIF a model could score which words are
significant predictors for certain books and which
are not (eg. “murder” is a good spoiler predictor
for a fantasy book, but not a mystery). This feature
was not implemented because of how computation-
ally expensive it is. Similarly, instead of using
POS bigrams, which did not perform as well as
bag-of-words, it may be worthwhile to implement
dependency parsing with tools like the Stanford De-
pendency Parser. Again, we chose to approximate
word dependency through POS tagging because of
computational limitations.

References

Jordan Boyd-Graber, Kimberly Glasgow, and
Jackie Sauter Zajac. 2013. Spoiler alert: Machine
learning approaches to detect social media posts with
revelatory information. Proceedings of the American
Society for Information Science and Technology,
50(1):1-9.

Buru Chang, Hyunjae Kim, Raehyun Kim, Deahan Kim,
and Jaewoo Kang. 2018. A deep neural spoiler detec-
tion model using a genre-aware attention mechanism.
In Advances in Knowledge Discovery and Data Min-
ing, pages 183-195, Cham. Springer International
Publishing.

Buru Chang, Inggeol Lee, Hyunjae Kim, and Jaewoo
Kang. 2021. “killing me” is not a spoiler: Spoiler
detection model using graph neural networks with
dependency relation-aware attention mechanism. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3613-3617, Online.
Association for Computational Linguistics.

Sheng Guo and Naren Ramakrishnan. 2010. Finding the
storyteller: automatic spoiler tagging using linguistic
cues. In Proceedings of the 23rd International Con-
ference on Computational Linguistics (Coling 2010),
pages 412-420.

Sungho Jeon, Sungchul Kim, and Hwanjo Yu. 2013.
Don’t be spoiled by your friends: spoiler detection
in tv program tweets. In Proceedings of the Interna-
tional AAAI Conference on Web and Social Media,
volume 7, pages 681-684.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of the Fifth International Conference
on Language Resources and Evaluation (LREC’06),
Genoa, Italy. European Language Resources Associ-
ation (ELRA).

Mengting Wan, Rishabh Misra, Ndapa Nakashole, and
Julian McAuley. 2019. Fine-grained spoiler detection
from large-scale review corpora. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2605-2610, Florence,
Italy. Association for Computational Linguistics.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480-1489, San Diego, California. Associa-
tion for Computational Linguistics.

https://doi.org/10.18653/v1/2021.eacl-main.315
https://doi.org/10.18653/v1/2021.eacl-main.315
https://doi.org/10.18653/v1/2021.eacl-main.315
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
https://doi.org/10.18653/v1/P19-1248
https://doi.org/10.18653/v1/P19-1248
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/N16-1174

Entered Feature(s) | Precision Recall F1 Score
Unigrams 0.70 0.72 0.71
+Bigrams 0.71 0.73 0.72
+Trigrams 0.72 0.74 0.73
+4-grams 0.72 0.73 0.72

Figure 2: Label-1 scores for baseline model. Multinomial Naive Bayes with N-grams.

Entered Feature(s) | Precision Recall F1 Score
Unigrams 0.71 0.69 0.70
+Bigrams 0.70 0.69 0.69
+Trigrams 0.70 0.71 0.70
+4-grams 0.70 0.71 0.70

Figure 3: Label-1 scores for baseline model. Support Vector Classification with N-grams.

Entered Feature | Precision Recall F1 Score
Unigrams 0.6242481526 0.8870883338 0.7328126576
Bigrams 0.6586445589 0.859017426 0.7456036446

Named entity 0.6083869795 0.8268216535 0.7009817483
(NE) unigrams

Figure 4: Label-1 scores for Naive Bayes Model without counts.

Entered Feature Precision Recall F1 Score
User ID 0.70 0.71 0.71
Author ID 0.63 0.63 0.63
Genre 0.71 0.71 0.71
Rating 0.71 0.67 0.69
Book ID 0.68 0.60 0.63
Spoiler sentence 0.68 0.69 0.68
location

Figure 5: Label-1 scores for Multinomial Naive Bayes Model with individual metadata features.

Entered Feature(s) | Precision Recall F1 Score
Genre 0.71 0.71 0.71
+User ID 0.70 0.70 0.70
+Rating 0.71 0.66 0.68
+Spoiler sentence 0.70 0.66 0.68
location

+Book ID 0.66 0.60 0.63
+Author ID 0.56 0.53 0.54

Figure 6: Label-1 scores for Multinomial Naive Bayes Model with combined metadata features.

Entered Feature Precision Recall F1 Score
NE unigrams 0.68 0.59 0.64
POS bigrams 0.67 0.39 0.49
POS bigrams with | 0.61 0.37 0.46

NE substitution

Figure 7: Label-1 scores for Multinomial Naive Bayes Model with text features.

Entered Feature(s) Precision Recall F1 Score
Genre with unigrams, 0.72 0.73 0.72
bigrams, and trigrams

User ID with unigrams, 0.72 0.73 0.72
bigrams and trigrams

Figure 8: Label-1 scores for best model, Frankenstein, using Genre and User ID metadata with trigrams.

Entered Feature(s) Precision Recall F1 Score
Unigrams (baseline) 0.73 0.77 0.75
User ID and spoiler 0.71 0.83 0.77

sentence location with
unigrams and bigrams

Figure 9: Label-1 scores for best model, Frankenstein, on Romance genre dataset.

Entered Feature(s) Precision Recall F1 Score
Unigrams (baseline) 0.70 0.72 0.71
User ID and spoiler 0.68 0.83 0.75

sentence location
with unigrams,
bigrams and trigrams

Figure 10: Label-1 scores for best model, Frankenstein, on Fantasy genre dataset.

